Iron(II)-Induced Activation of Dioxygen for **Oxygenation of Cyclohexene and Methyl Linoleate** and Initiation of the Autoxidation of 1,4-Cyclohexadiene

John P. Hage, John A. Powell, and Donald T. Sawyer*

Department of Chemistry, Texas A&M University College Station, Texas 77843-3255

Received July 31, 1995

In general, iron-induced activation of dioxygen (O₂) requires either (a) that it be in a reduced state (HOOH; Fenton chemistries)¹⁻³ or (b) a reductant cofactor ($O_2/DH_2 = Ph$ -NHNHPh, ascorbic acid, thiols, cytochrome P-450 reductase)⁴ to facilitate hydrocarbon oxygenation. In a few cases, the organic substrate also acts as the reductant, e.g., pyrocatechol dioxygenase, which induces O₂ to transform catechol to muconic acid.^{5,6} Hence, the discovery that iron(II) complexes catalytically activate O₂ for the direct oxygenation of cyclohexene and methyl linoleate came as a great surprise.

Here we report that coordinately unsaturated iron(II) complexes $[Fe^{II}(bpy)_2^{2+}$ and $Fe^{II}(OPPh_3)_4^{2+}]$ in acetonitrile catalytically activate O₂ for the direct oxygenation of cyclohexene (c-C₆H₁₀) and methyl linoleate [CH₃(CH₂)₄CH=CHCH₂CH=CH-(CH₂)₇C(O)OCH₃; RH] (Table 1). The product profiles for $c-C_6H_{10}$ and methyl linoleate (MeL) indicate that (a) the 1.0 mM Fe^{II}(bpy) $_2^{2+}/O_2$ (1 atm)/4 M c-C₆H₁₀ combination undergoes 230 turnovers within 1 h (the 0.1 mM/1 M c-C₆H₁₀ system has 187 turnovers within 6 h) and (b) with 1 M MeL in place of $c-C_6H_{10}$, the combination undergoes 27 turnovers within 1 h (the 0.2 mM system has 123 turnovers within 6 h).

Cyclohexene. With 1 M c-C₆H₁₀ as the substrate, (a) the use of air (0.2 atm O_2) in place of O_2 (1 atm) alters the c-C₆H₈(O)/c-C₆H₉OH (-one/-ol) product ratio from about 1.5 to about 0.9, but does not significantly reduce the rate of product formation; (b) larger catalyst concentrations (5 mM or greater) are less efficient; (c) the presence of 0.1% H₂O (56 mM) reduces the reaction efficiency by 30-50% (1% H₂O completely quenches the reaction, as does the presence of pyridine); and (d) the $Fe^{II}(bpy)_3^{2+}$ complex is not an effective catalyst [the Fe^{II}(OPPh₃)₄²⁺ complex is about one-half as efficient as Fe^{II}- $(bpy)_2^{2+}$, and the Cu^{II}(OPPh₃)₄²⁺ complex is about one-tenth as efficient]. With 4 M c-C₆H₁₀, the initial rate of product formation is enhanced by a factor of 9 to give 230 mM product after 1 h

Methyl Linoleate. With 1 M MeL as the substrate (contains one double allylic and two single allylic carbon centers), (a) about 3 times as much ketone (3 isomers plus a keto-epoxide; the double allylic center is about 3 times as reactive as the single allylic centers) is produced as alcohol (3 isomers, with the double allylic center about twice as reactive as the single allylic centers); (b) the initial rates of reaction are proportional to the catalyst concentration (up to 1 mM) and the partial pressure of O₂; (c) the alcohol/ketone product ratio is essentially the same for O_2 and air; and (d) the presence of 1% H₂O reduces the yield of alcohol by 50% but does not affect the yield of ketone.

The $Fe^{II}(bpy)_2^{2+}/O_2/MeCN$ system is unreactive with 1 M 1-hexene, norbornene, methyl oleate, cis-stilbene, PhCH₂CH₃, and cyclohexane. However, with 4 M concentrations of the aliphatic olefins, limited amounts of ketone and alcohol products are observed.

1,4-Cyclohexadiene. The Fe^{II}(bpy)₂²⁺/O₂/MeCN system initiates the autoxidation of 1,4-c-C₆H₈ (with two double allylic carbon centers; $\Delta H_{\text{DBE}} = 73 \text{ kcal mol}^{-1}$)⁷ and benzaldehyde [PhCH(O); $\Delta H_{\text{DBE}} = 87 \text{ kcal mol}^{-1}$].⁷ The combination of 0.5 mM Fe^{II}(bpy) $_{2^{2+}}/O_{2}$ (1 atm)/1 M c-C₆H₈ yields 0.37 M PhH, 6 mM c-C₆H₇OOH, and 1 mM PhOH within 3 h; with 1 M PhCH-(O), the system produces 0.37 M PhC(O)OH within 3 h. As in the case of $c-C_6H_{10}$ and methyl linoleate, the presence of 0.1% H₂O quenches the initiation rate by 30-40%; 1% H₂O completely inhibits the initiation. The use of air $(0.2 \text{ atm } O_2)$ in place of O_2 (1 atm) reduces the initiation rate by 40%, and the $Fe^{II}(bpy)_3^{2+}$ complex is inactive. The initiation of the catalyst-independent autoxidation of c-C₆H₈ to benzene and H₂O appears to depend on the initial formation of c-C₆H₇OOH, which, in combination with $Fe^{II}(bpy)_2^{2+}$, becomes a Fenton reagent (and in combination with O₂ an oxygenated Fenton reagent to produce PhOH from c-C₆H₈).^{3,8}

Although the iron(II)-induced formation of the hydroperoxide of $c-C_6H_{10}$ is an attractive proposition (which would lead to subsequent oxygenated Fenton chemistry and the observed product profiles), we have not been able to detect even trace amounts. Furthermore, water does not have a deleterious effect on oxygenated Fenton chemistry, whereas it is a serious inhibitor with the present system.

Given the preceding observations of catalyst activity, substrate dependence, and O₂ dependence, a reasonable interpretation is that the primary step is the reversible formation of a substrate adduct of a coordinately unsaturated iron(II) complex in a basefree solvent, with subsequent incorporation of O₂ to produce oxygenated products. Product water and alcohol cause the catalyst to become coordinated, saturated, and inactive:

$$2Fe^{II}(bpy)_{2}^{2+} + 4H_{2}O \rightarrow Fe^{II}(bpy)_{3}^{2+} + Fe^{II}(bpy)(OH_{2})_{4}^{2+}$$
(1)

The last entries in Table 1 give the product profiles for an $Fe^{II}(bpy)_2^{2+}/t$ -BuOOH/O₂ system (oxygenated Fenton chemistry)³ after a 3 h reaction time. These are closely similar to those for the $Fe^{II}(bpy)_2^{2+}/O_2$ system, but $c-C_6H_{10}$ does not yield any epoxide. An earlier study³ has shown that the oxygen atoms in the $c-C_6H_9OH$ and $c-C_6H_8(O)$ products come from O₂ and not t-BuOOH, which may account for the equivalent product profiles. Here this Fenton system, in its reaction with $c-C_6H_{10}$, exhibits substantial O₂ turnovers beyond the 20 mM t-BuOOH [86 mM c-C₆H₈(O) and 60 mM c-C₆H₉OH]. A hydroperoxideindependent intermediate $[L_2^{2+}Fe^{IV}(OH)(OOC_6H_9), 6]$ has been proposed to account for this excess product yield.³

These considerations lead us to propose a set of reaction paths for the $Fe^{II}(bpy)_2^{2+}/O_2$ reaction with $c-C_6H_{10}$ that are consistent with the product profiles and experimental observations (Scheme 1). The unique and selective reactivity of $c-C_6H_{10}$ (relative to other olefins) appears to be due to adduct formation prior to reaction with dioxygen to give 11. The latter in turn reacts with another $O_2/c-C_6H_{10}$ to give 6 and $c-C_6H_9OH$ (path A) or $c-C_6H_{10}$ to give $c-C_6H_9OH$ and epoxide (path B). Species 6 appears to be identical to the species 6 of oxygenated Fenton chemistry³ and of iron(II)/reductant-induced activation of dioxygen.⁴ In the present system, 6 can react with (a) another $O_2/c-C_6H_{10}$ to give 6 and $c-C_6H_8(O)$ (path C) or (b) $c-C_6H_{10}$

⁽¹⁾ Sawyer, D. T.; Kang, C.; Llobet, A.; Redman, C. J. Am. Chem. Soc. 1993, 115, 5816-5818

⁽²⁾ Sawyer, D. T.; Hage, J. P.; Sobkowiak, A. J Am. Chem. Soc. 1995, 117, 106-109.

⁽³⁾ Kang, C.; Redman, C.; Cepak, V.; Sawyer, D. T. *Bioorg. Med. Chem.* **1993**, *1*, 125-140. (4) Sawyer, D. T.; Liu, X.; Redman, C.; Chong, B. Bioorg. Med. Chem.

^{1994, 2, 1385-1395.}

⁽⁵⁾ Weller, M. G.; Weser, U. J. Am. Chem. Soc. 1982, 104, 3752.

⁽⁶⁾ Sheu, C.; Sobkowiak, A.; Jeon, S.; Sawyer, D. T. J. Am. Chem. Soc. 1990, 112, 879-881.

⁽⁷⁾ Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 71st ed.; CRC Press: Boca Raton, FL, 1990; pp 95-98. (8) Sheu, C.; Richert, S. A.; Cofré, P. Ross, B., Jr.; Sobkowiak, A.;

Sawyer, D. T.; Kanofsky, J. R. J. Am. Chem. Soc. 1990, 112, 1936-1942.

4.5 (1.1)

3.1 (0.0)

3.0

Table 1. Activation of O_2 by $Fe^{II}(bpy)_2^{2+}$ for the Oxygenation of Cyclohexene (c-C₆H₁₀) and Methyl Linoleate [CH₃(CH₂)₄CH=CHCH₂CH= CH(CH₂)₇C(O)OCH₃] in MeCN {One Hour Reaction Time; Po₂, 1 atm (or 0.2 atm)} [Yields at 10-Min Reaction Time] A. Cyclohexene

$Fe^{ii}(bpy)_2^{2+}$ (mM)		products $(mM, \pm 5\%)^a$			
	$c-C_{6}H_{10}(M)$	$c-C_6H_8(O)$	c-C₀H₀OH	c-C ₆ H ₁₀ -epoxide	-one/-ol ratio (air
0.1	1.00	5.6	3.1	0.2	1.8
$0.2 (air)^b$	1,00	7.9 (9.4)	4.3 (10)	0.4 (0.3)	1.9 (0.9)
$0.5^{c,d} (air)^b$	1,00	13 (14)	9.5 (15)	0.8 (0.9)	1.3 (1.0)
1.0 (air) ⁶	1.00	21 (18) [4.1]	14 (21) [3.5]	1.6 (0.9) [0.6]	1.5 (0.9)
	0.25	0	0	0	
	0.50	3.7	1.8	0.3	2.0
	0.75	9.2 [1.3]	5.0 [1.0]	0.7 [0.2]	1.9 [1.3]
	2.00	48 [14]	43 [15]	2.9 [0.8]	1.1 [1.0]
	4.00	113 [35]	111 [40]	6.6 [2.2]	1.0 [0.9]
2.0 (air) ^b	1.00	15 (14)	8.6 (15)	1.1 (0.6)	1.8 (0.9)
$10.0 (+20 \text{ mM}t-\text{BuOOH})^e$	1.00	86	60	0.0	1.4
		B. Methyl Linolea	te (RH, 1 M)		
		products $(mM, \pm 5\%)^a$			
$Fe^{II}(bpy)_2^{2+}(mM)$	R'(O) [3 isomers + keto-epoxide]		e] ROH	I [3 isomers]	-one/-o1 ratio (air)
$0.2 (air)^b$	4.5 [1.1/0.9/2.5/0.0] (0.4)		3.7 [1.	3.7 [1.5/1.3/0.9] (0.7)	
$0.5 (air)^b$	20 [3.2/4.2/8.3/4.2] (5.4)		4.5 [0.	4.5 [0.6/0.9/3.0] (1.7)	
$1.0 (air)^b$	20 [3.	20 [3.8/2.4/10/3.2] (5.7)		0/3.0/2.51 (2.9)	3.1 (2.0)

^a The combination of Fe^{II}(bpy)₂²⁺ and 1 M c-C₆H₁₀ (or methyl linoleate, c-C₆H₈, PhCH(O), and other substrates) in 5.0 mL of MeCN (25 °C) was saturated with O_2 (1 atm) to initiate the reaction. The $Fe^{II}(bpy)_2^{2+}$ complex was prepared in situ by mixing $[Fe^{II}(MeCN)_4](CIO_4)_2$ in MeCN with 2 equiv of 2,2'-bipyridine. After the indicated reaction times, the yield of products was assayed by capillary column GC and/or GC-MS. Control experiments (i) without catalyst, (ii) without O2, and (iii) without substrate each resulted in no reaction and no products. ^b With air in place of O₂ (1 atm); the yields are given in parenthesis. ^c With c-C₆H₁₀, c-C₆H₈, PhCH(O), and other substrates, the presence of 0.1% H₂O (v/v) reduced the yields by 30-40%; with 1% H₂O, no products were detected after 3 h. ^d With 0.5 mM Fe^{II}(OPPh₃)₄²⁺ in place of Fe^{II}(bpy)₂²⁺, the product yields are reduced 30-50%. ^e Results with an oxygenated Fenton system, ref 3. ^f With methyl linoleate, the presence of 1% H₂O reduced the alcohol yield by 50% but did not affect the ketone yields.

20 [3.2/4.8/8.4/3.7] (3.9)

12 [3.0/2.6/5.8/0.9] (0.0)

36 [7.3/6.5/16/5.1]

Scheme 1. Iron(II)-Induced Activation of O_2 for the Oxygenation of Cyclohexene $(c-C_6H_{10})$

2.0 (air)b

5.0f (air)b

10.0 (+20 mM t-BuOOH)^e

alone to give $c-C_6H_8(O)$ and $c-C_6H_9OH$ (path D). The results of Table 1A indicate that with O₂ at 1 atm, path C is followed three times before path D terminates a cycle to give three ketones and two alcohols (-one/-ol ratio, 1.5). With air (0.2 atm O_2), path C is followed one time before path D to give two ketones and two alcohols (-one/-ol ratio, 0.9); 0.1 atm O2 gives a ratio of 0.8.

The results of Table 1B indicate that MeL has reaction paths similar to those for $c-C_6H_{10}$, but with the complication of two single allylic ($\Delta H_{\text{DBE}} = 85 \text{ kcal mol}^{-1}$) and one double allylic $(\Delta H_{\rm DBE} = 75 \text{ kcal mol}^{-1})$ centers.⁷ When the latter forms 6, it occasionally may collapse to give the observed keto-epoxide:

$$6 \rightarrow \text{MeL-keto-epoxide} + H_2O + Fe^{II}(bpy)_2^{2+}$$
 (2)

When $c-C_6H_8$ reacts to form 11 (analogous to $c-C_6H_{10}$ and MeL; Scheme 1), the latter collapses to give the observed $c-C_6H_7OOH$. The latter becomes an oxygenated Fenton reagent³ to produce intermediate 6 and PhOH. Species 6 in turn reacts with $O_2/c-C_6H_8$ to produce HOO[•]:

4.1 [0.4/1.3/2.4] (3.5)

3.9 [1.1/1.4/1.4] (3.3)

12 [0.8/5.8/5.6]

$$6 + O_2 + c - C_6 H_8 \xrightarrow{2} c - C_6 H_7 OO \xrightarrow{2} 2 PhH + 2 HOO \qquad (3)$$

H₂O, Fe^{ll}(bpy)₂²⁺

which is the carrier of the observed catalysis-independent autoxidation,

$$HOO' + c - C_6 H_8 + O_2 \longrightarrow c - C_6 H_7 OO' \longrightarrow HOO'$$
(4)
HOOH PhH

An earlier study of the Fe^{II}(bpy)₂²⁺/reductant/O₂-induced initiation of the autoxidation of $c-C_6H_8$ concluded that an equivalent species 6 is the initiating intermediate.⁴

The formation of a hydroperoxide from c-C₆H₈ may be relevant to the peroxidation of lipids by O_2 via iron-bleomycin^{9,10} and lipoxygenase.¹¹ Likewise, the results for the Fe^{II}(bpy)₂²⁺/O₂/MeL system (Table 1B) are pertinent to metal/ O₂-induced toxicity, rancidification of fats and oils, and the oxy radical theory of aging and heart disease.^{12,13}

Acknowledgment. This work was supported by the Welch Foundation under Grant No. 1042A. We are grateful for an NSF-REU award (J.A.P.).

JA952557Y

⁽⁹⁾ Nagata, R.; Morimoto, S.; Saito, I. Tetrahedron Lett. 1990, 31, 4485-4488

⁽¹⁰⁾ Kikuchi, H.; Tetsuka, T. J. Antibiot. 1992, 45, 548-555.

 ⁽¹⁾ Guajardo, R.; Mascharak, P. K. Inorg. Chem. 1995, 34, 802-808.
 (12) Stadtman, E. R. Science 1992, 257, 1220-1224.

⁽¹³⁾ Sohal, R. S.; Allen, R. G. Adv. Free Radical Biol. Med. 1986, 2,

^{117 - 160.}